🎩
wilmerags 🌱
  • Home
  • Social
  • Cloud
    • Aws
  • Stats
  • Code
    • Scrum
    • Ssh
    • Vim
    • Dvc
    • Postgresql
    • Tmux
    • Terraform
    • Web tools
    • Sql
    • Rest api
    • Mongo
    • Docker
    • Octave
    • Elasticsearch
    • Kubernetes
    • Bash
    • Rabbitmq
    • Databases
      • Mongo
      • Elasticsearch
      • Sql
        • Postgresql
    • Devops
      • Terraform
      • Docker
      • Kubernetes
      • Rabbitmq
    • Python
      • Airflow
      • Keras
      • Spark
      • Azure
      • Matplotlib
      • Jupyter
      • Numpy
      • Databases
      • Sklearn
      • Requests
      • Pandas
      • Elasticsearch
      • Tensorflow
    • Git
      • Gitflow
    • R
      • Lpsolve
  • Indie-hacker
  • Macos
  • Interesting
  • Thoughts
    • Health
    • Work
    • Relationships
    • On the need of expressiveness
    • On organizing knowledge
    • On the importance of questions
  • Linux
    • Vim
    • Tmux
  • Webdev
    • Vue
  • Readings
    • Psychology
    • Habits
    • Projects management
    • Quotes
    • Dopamine detox
  • Ai
    • Ml
      • Xgboost
      • Performance evaluation
      • Community detection
      • Cloud_platforms
        • Ai platform
        • Sagemaker
      • Unsupervised_learning
    • Nlp
    • DS
Powered by GitBook
On this page
  • Python
  • Resources

Was this helpful?

  1. Ai

Nlp

NLP Knowledge and experiences

Python

import sklearn
from sklearn.feature_extraction.text import CountVectorizer
# instantiate an ngram counter
counts = CountVectorizer(analyzer='word', ngram_range=(n,n))

# create a dictionary of n-grams by calling `.fit`
vocab2int = counts.fit([a_text, s_text]).vocabulary_

Resources

  • CS 224N (Don't remember why i need this: 51506490)

  • https://www.fast.ai/

  • Intro to TensorFlow for Deep Learning | Udacity

  • Embedding projector - visualization of high-dimensional data

  • LDA visualized using t-SNE and Bokeh | Kaggle

  • (PDF) Classification of Twitter Users Who Tweet About E-Cigarettes

  • Visualizing Top Tweeps with t-SNE, in Javascript

PreviousUnsupervised_learningNextDS

Last updated 3 years ago

Was this helpful?